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The purpose of this note is to describe a time step control technique as applied to radiation
diffusion. Standard practice only provides a heuristic criteria related to the relative change
in the dependent variables. We propose an alternative based on relatively simple physical
principles. This time step control applies to methods of solution that are unconditionally
stable and converges nonlinearities within a time step in the governing equations. Com-
monly, nonlinearities in the governing equations are evaluated using existing (old time)
data. We refer to this as the semi-implicit (SI) method. When a method converges non-
linearities within a time step, the entire governing equation including all nonlinearities is
self-consistently evaluated using advance time data (with appropriate time centering for
accuracy).

This criteria grew out of our work using Newton–Krylov (NK) methods to solve radiation
diffusion problems [2, 4]. We observed that standard time step control ideas were poorly
correlated to our results with regards to efficiency and accuracy. Our results indicated
that using a method that converged nonlinearities allows much larger time step sizes with
acceptable accuracy.

Our governing equations are based on two temperature radiation diffusion,
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+ cκ(aT4− E) (1a)

1 This work performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory
under Contract W-7405-ENG-36.
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and the material temperature equation

∂CvT

∂t
= cκ(E − aT4), (1b)

κ is the opacity,a is the Stefan–Boltzmann constant, andc is the speed of light. This can
be reduced to one temperature radiation diffusion by assuming an equilibrium between the
radiation and material temperatures,E=aT4, and sum (1a) and (1b). The result is

∂
(
aT4+ CvT

)
∂t

= ∇ ·
(

c

3κ
∇aT4

)
. (2)

In the discussions below we will refer to (1a) and (1b) as the 2-T equations and (2) as the
1-T equation.

Time step control for (1) or (2) is traditionally based on the relative change in the depen-
dent variables [1] when applied to problems which do not converge nonlinearities. Here,
this is applied in the fashion

η =
∣∣En

j − En−1
j

∣∣
En

j + Efloor
,

wheren is the time index,j is the space index, andEfloor is a prescribed constant usually
set equal to a multiple of the lower bound for the energy in a given problem. The new time
step size is then computed using

1tnew= 1told

(
ηtarget

maxj η

)0.5

,

in an attempt to smoothly approachηtarget. The general thinking is that if the relative change
in energy is kept small the linearization of the governing equations does not introduce
significant errors and that the nonlinearities do not need to be converged. This quantity is
typically chosen between 0.05 to 0.20.

We propose to use a criteria based on an estimate of the nonlinear wave speed present
in the solution to be used. In one dimension this involves computing the ratio of temporal
to spatial derivatives of the dependent variable(s). In principle, we are assuming that the
hyperbolic PDE,

∂E

∂t
+ vrad

∂E

∂x
= 0, (3)

models the problem. This result is consistent with the construction of traveling wave simi-
larity solutions. One generally assumes that the solution has the formE(x− vt); upon such
an assumption similarity forms for the Marshak wave are derived [6, 3]. Rearranging (3)
gives the expression

vrad= − ∂E/∂t

∂E/∂x
. (4)

To avoid problems from lack of smoothness we compute this in aL1 sense,

vrad=
∑(∣∣En

j − En−1
j

∣∣/1t
)

(1/2)
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With this estimate in hand, a Courant–Friedrichs–Lewy (CFL) condition can be used to
provide a time step size,

1t = C‖1x‖
vrad

, (5)

where‖1x‖ uses the same norm as above (L1). This can be simplified to

1tsolution=
(1/2)

∑∣∣En
j+1− En

j−1

∣∣∑(∣∣En
j − En−1

j

∣∣/1t
) . (6)

In more than one dimension one can sum the spatial derivative to similar effect.
This will provide a time step commensurate with the dominant time scale in the problem.

By using aL1 norm in this estimate, the computed value will be smoothed and will provide an
average of the dominant nonlinear time scale in a solution. Note that if the problem does not
have any nonlinearity this estimate will reduce to an average of the explicit diffusion based
time step limit over the grid. This can be demonstrated by substituting a linear diffusion
equation into (4) and using the linearity to simplify (5) to

1t = C1x2

D
,

whereD is the linear diffusion coefficient. The result in (4) coincides with these results.
Furthermore, as we show the results coincide with our observations regarding the accuracy
and efficiency of solutions using NK methods for solving these equations.

We show three examples in support of our proposed time step control. In one dimension
we will show the ability for a NK method to provide accurate, efficient solutions should the
time step be selected by a Courant number defined byvrad in (4). Our problems are selected
from [4] for the 1-T equations and from [2] for the 2-T equations.

Previously, we have shown that through converging nonlinearities one can achieve higher
order accuracy in radiation diffusion [4, 2]. Specifically, we have demonstrated nearly
second-order (certainly super-linear) convergence on flux-limited radiation diffusion prob-
lems. This holds the promise of keeping the error from the solution fixed while taking
significantly larger time steps. As the relative energy change criteria becomes larger it is
no longer linearly related to the time step size. The Courant number requirement is linearly
related to the time step size.

Specifically, we have run the earlier one dimensional, one temperature radiation diffusion
benchmark [4], where a nonlinear flux-limited diffusion coefficient is used. The second-
order method demonstrates a 1.70 convergence rate over the entire range of time step sizes
investigated (1t = 1× 10−3 to1t = 0.5) which corresponds to a CFL number range of
0.004–2, or a relative energy change range of 1.5–90%. It is notable that the method is stable,
convergent, and efficient to much larger time step sizes (corresponding to a CFL number of
8). Present accepted practice would consider a 5% relative energy change a tight restriction
in time step size selection. For the second-order (implicit midpoint) nonlinear integration
method this corresponds to the error created by setting the CFL number to approximately
1/2. This would provide a solution of comparable quality with time step size nearly 70 times
larger.

For a multidimensional implementation this provides a substantial savings. Using the
method described in [4] we investigate the improvement in raw performance given by
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FIG. 1. The relation between the estimated Marshak wave CFL time step size and the time step size for a
relative energy change based time step size control. Two floor energies are shown to demonstrate the effect of this
modification in the relative energy change time step control.

the above described time step size criteria. We solve a multi-material problem with four
distinct regions of differing mass number with an imposed radiation flux at one boundary.
The Newton–Krylov (second-order, NK2) method uses an FGMRES algorithm [5] with
a V-cycle multigrid preconditioner and the implicit midpoint rule time differencing. The
nonlinear residual is converged to at least 1× 10−4 with the ratio of linear to nonlinear
residual kept at 1× 10−2. The linearized (semi-implicit, SI) method uses identical spatial
differencing to the nonlinearly converged method except that the coefficients are linearized
to old time values and the time differencing is backwards Euler. The linear convergence
tolerance requires that the residual be converged below 1× 10−6 using a multigrid V-cycle
preconditioned conjugate gradient algorithm as a linear equation solver.

On a 64× 64 grid, the NK2 method requires 50 times fewer time steps using a Courant
number of1

2 as compared with the SI method using a relative energy change of 5%. For
comparison, the differences between a CFL-based time step size and one based on relative
energy change is shown in Fig. 1. While the CFL-based control retains a linear relation to
time step size, the relative energy change based control has an exponential behavior with
respect to time step size. In terms of overall use of CPU time, the NK2 method is 2.48 times
faster using a CFL number of 0.25. A superiority in efficiency holds for time step sizes
selected as low as a CFL number of 0.02. This reflects the complexity of Newton iteration
as compared with the SI method.

On the other hand, if the time step size criteria imposed by the relative energy change
limits the overall code, all other physics can be computed with a much larger time step size
(assuming stability and accuracy in each case). Additionally, we demonstrated that NK2
method achieves better scaling with problem size than the SI scheme [4]. Thus, the disparity
between the SI and NK methods will grow as the problem size is increased. On a 128×128
grid the ratio grows to 2.94 and on a 256× 256 grid the ratio is 3.11.

The small time step size used in the SI method allows one to consider a simpler linear
algebra solution. Using diagonally scaled conjugate gradient on the 64× 64 grid yields
savings over the multigrid solver, where it is 3.2 times faster. The poor scaling properties
of the diagonal scaling preconditioner cause it to be 1.15 times slower than the multigrid
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FIG. 2. A comparison of theL2 norm of error as a function of the front CFL number and the various methods
discussed in the text.

on the 256× 256 grid and thus 3.58 times slower than the NK2 solver for a fixed level of
solution accuracy.

Finally, we include results from a 2-T nonequilibrium model in one dimension from [2].
Here we use block symmetric Gauss–Seidel as the preconditioner with GMRES for the SI
method and Newton–GMRES for the NK method. The linear and nonlinear convergence
tolerances are the same as with the 1-T problems. The first model problem from [2] is run
out to a time of 3 on a grid of 200 cells. The front CFL method is used to control the time
step and a time step convergence is performed against the NK2 method with a time step of
CFL= 10−3. We can see that NK2, CFL= 2.0 is more accurate than SI, CFL= 0.01. The
relative energy error for SI, CFL= 0.01, was 5 percent. First-order Newton–Krylov (NK1)
achieves this same accuracy for CFL= 0.2. In relative CPU performance NK1 is 4.16 times
as fast as SI and NK2 is 7.25 times faster than SI all at the same accuracy. Figure 2 shows
the accuracy of each of these methods as function of the computed front CFL number.

In summary, we have provided a physically motivated method to compute the size of the
time step for the calculation of nonlinear diffusion phenomena. The overall consensus of
our results seems to indicate that the use of second-order time differencing in conjunction
with a NK method can yield high quality results with reduced cost if the CFL number is
chosen in the range of 0.10–0.50.
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